69 research outputs found

    Future Venus Probe Missions

    Get PDF
    Probes are essential to understanding Venus Direct implications for Earth's formation and history, origin of life, extra solar planets Range of desired capability includes: a) Multiprobes; b) Descenders; c) Landers; d) Balloons; and e) Long-lived landers

    Atmospheric Composition, Chemistry, and Clouds

    Get PDF
    Venus’ atmosphere has a rich chemistry involving interactions among sulfur, chlorine, nitrogen, hydrogen, and oxygen radicals. The chemical regimes in the atmosphere range from ion-neutral reactions in the ionosphere to photochemistry in the middle atmosphere to thermal equilibrium chemistry and surface-atmosphere reactions in the lower atmosphere. This variety makes Venus an important planet to understand within the context of terrestrial-like planets, both in our own solar system and outside it. The primary chemical cycles are believed known but surprisingly few details about these cycles have been fully verified by concurrence among observations, experiments, and modeling. Good models have been developed that account for many properties of the cloud layers, but the size distribution, shape, and composition of the majority of the aerosol mass are still open issues. This chapter reviews the state of knowledge prior to the Venus Express mission for the composition, chemistry, and clouds of the neutral atmosphere on Venus. Observations by instruments on Venus Express, in combination with ground-based observations, laboratory experiments, and numerical modeling, should answer some of the major open questions regarding the composition, chemistry, and clouds of Venus’ atmosphere

    Atmospheric composition, chemistry, and clouds

    Get PDF

    Meter-Sized Moonlet Population in Saturn\u27s C Ring and Cassini Division

    Get PDF
    Stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph reveal the presence of transparent holes a few meters to a few tens of meters in radial extent in otherwise optically thick regions of the C ring and the Cassini Division. We attribute the holes to gravitational disturbances generated by a population of similar to 10 m boulders in the rings that is intermediate in size between the background ring particle size distribution and the previously observed similar to 100 m propeller moonlets in the A ring. The size distribution of these boulders is described by a shallower power-law than the one that describes the ring particle size distribution. The number and size distribution of these boulders could be explained by limited accretion processes deep within Saturn\u27s Roche zone

    Infrared Observations During the Secondary Eclipse of HD 209458b: I. 3.6-Micron Occultation Spectroscopy Using the VLT

    Get PDF
    We search for an infrared signature of the transiting extrasolar planet HD 209458b during secondary eclipse. Our method, which we call `occultation spectroscopy,' searches for the disappearance and reappearance of weak spectral features due to the exoplanet as it passes behind the star and later reappears. We argue that at the longest infrared wavelengths, this technique becomes preferable to conventional `transit spectroscopy'. We observed the system in the wing of the strong nu-3 band of methane near 3.6 microns during two secondary eclipses, using the VLT/ISAAC spectrometer at a spectral resolution of 3300. Our analysis, which utilizes a model template spectrum, achieves sufficient precision to expect detection of the spectral structure predicted by an irradiated, low-opacity (cloudless), low-albedo, thermochemical equilibrium model for the exoplanet atmosphere. However, our observations show no evidence for the presence of this spectrum from the exoplanet, with the statistical significance of the non-detection depending on the timing of the secondary eclipse, which depends on the assumed value for the orbital eccentricity. Our results reject certain specific models of the atmosphere of HD 209458b as inconsistent with our observations at the 3-sigma level, given assumptions about the stellar and planetary parameters.Comment: 26 pages, 8 figures Accepted to Astrophysical Journa

    The 1990 update to strategy for exploration of the inner planets

    Get PDF
    The Committee on Planetary and Lunar Exploration (COMPLEX) has undertaken to review and revise the 1978 report Strategy for Exploration of the Inner Planets, 1977-1987. The committee has found the 1978 report to be generally still pertinent. COMPLEX therefore issues its new report in the form of an update. The committee reaffirms the basic objectives for exploration of the planets: to determine the present state of the planets and their satellites, to understand the processes active now and at the origin of the solar system, and to understand planetary evolution, including appearance of life and its relation to the chemical history of the solar system
    • …
    corecore